K-Scale Manipulation Suite
Contents
Setup - Linux[edit]
https://github.com/kscalelabs/gym-kmanip
Clone and install dependencies
git clone https://github.com/kscalelabs/gym-kmanip.git && cd gym-kmanip conda create -y -n gym-kmanip python=3.10 && conda activate gym-kmanip pip install -e .
Run tests
pip install pytest pytest tests/test_env.py
Setup - Jetson Orin AGX[edit]
No conda on ARM64, install on bare metal
sudo apt-get install libhdf5-dev git clone https://github.com/kscalelabs/gym-kmanip.git && cd gym-kmanip pip install -e .
Usage - Basic[edit]
Visualize the MuJoCo scene
python gym_kmanip/examples/1_view_env.py
Record a video of the MuJoCo scene
python gym_kmanip/examples/2_record_video.py
Usage - Recording Data[edit]
K-Scale HuggingFace Datasets Data is recorded via teleop, this requires additional dependencies
pip install opencv-python==4.9.0.80 pip install vuer==0.0.30 pip install rerun-sdk==0.16.0
Start the server on the robot computer
python gym_kmanip/examples/4_record_data_teleop.py
Start ngrok on the robot computer
ngrok http 8012
Open the browser app on the VR headset and go to the ngrok URL
Usage - Visualizing Data[edit]
Data is visualized using rerun
rerun gym_kmanip/data/test.rrd
Usage - MuJoCo Sim Visualizer[edit]
MuJoCo provides a nice visualizer where you can directly control the robot Download standalone MuJoCo
tar -xzf ~/Downloads/mujoco-3.1.5-linux-x86_64.tar.gz -C /path/to/mujoco-3.1.5
Run the simulator
/path/to/mujoco-3.1.5/bin/simulate gym_kmanip/assets/_env_solo_arm.xml
Citation[edit]
@misc{teleop-2024, title={gym-kmanip}, author={Hugo Ponte}, year={2024}, url={https://github.com/kscalelabs/gym-kmanip} }