The K-Scale Labs cluster is a clusters are shared cluster for robotics research. This page contains notes on how to access the clusterclusters.
=== Onboarding ===
To get onboarded, you should send us the public key that you want to use and maybe your preferred username.
=== Lambda Cluster ===
After being onboarded, you should receive the following information:
Note that <code>~/.ssh/id_rsa</code> should point to your private key file.
Alternatively, you can add the following to your SSH config file, which should allow you to connect directly,Use your favorite editor to open the ssh config file (normally located at <code>~/.ssh/config</code> for Ubuntu) and paste the text:
<syntaxhighlightlang="text">
Host jumphost
User stompy
Hostname 127.0.0.2
ProxyJump jumphost
IdentityFile ~/.ssh/is_rsaid_rsa
</syntaxhighlight>
After setting this up, you can use the command <code>ssh cluster</code> to directly connect. You can also access via VS Code. Tutorial of using <code>ssh</code> in VS Code is [https://code.visualstudio.com/docs/remote/ssh-tutorial here]. Please inform us if you have any issues.!
=== Notes ===
* You may need to restart <code>ssh</code> to get it working.
* You may be sharing your part of the cluster with other users. If so, it is a good idea to avoid using all the GPUs. If you're training models in PyTorch, you can do this using the <code>CUDA_VISIBLE_DEVICES</code> command.
* You should avoid storing data files and model checkpoints to your root directory. Instead, use the `<code>/ephemeral` </code> directory. Your home directory should come with a symlink to a subdirectory which you have write access to. === Andromeda Cluster === The Andromeda cluster is a different cluster which uses Slurm for job management. Authentication is different from the Lambda cluster - Ben will provide instructions directly. Don't do anything computationally expensive on the main node or you will crash it for everyone. Instead, when you need to run some experiments, reserve a GPU (see below). ==== SLURM Commands ==== Show all currently running jobs: <syntaxhighlight lang="bash">squeue</syntaxhighlight> Show your own running jobs: <syntaxhighlight lang="bash">squeue --me</syntaxhighlight> Show the available partitions on the cluster: <syntaxhighlight lang="bash">sinfo</syntaxhighlight> You'll see something like this: <syntaxhighlight lang="bash">$ sinfoPARTITION AVAIL TIMELIMIT NODES STATE NODELISTcompute* up infinite 8 idle compute-permanent-node-[68,285,493,580,625-626,749,801]</syntaxhighlight> This means: * There is one compute node type, called <code>compute</code>* There are 8 nodes of that type, all currently in <code>idle</code> state* The node names are things like <code>compute-permanent-node-68</code> To launch a job, use [https://slurm.schedmd.com/srun.html srun] or [https://slurm.schedmd.com/sbatch.html sbatch]. * '''srun''' runs a command directly with the requested resources* '''sbatch''' queues the job to run when resources become available For example, suppose I have the following Shell script: <syntaxhighlight lang="bash">#!/bin/bash echo "Hello, world!" nvidia-smi</syntaxhighlight> I can use <code>srun</code> to run this script with the following result: <syntaxhighlight lang="bash">$ srun --gpus 8 ./test.shHello, world!Sat May 25 00:02:23 2024+-----------------------------------------------------------------------------------------+| NVIDIA-SMI 550.54.15 Driver Version: 550.54.15 CUDA Version: 12.4 ||-----------------------------------------+------------------------+----------------------+| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC || Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. || | | MIG M. ||=========================================+========================+======================| ... truncated</syntaxhighlight> Alternatively, I can queue the job using <code>sbatch</code>, which gives me the following result: <syntaxhighlight lang="bash">$ sbatch --gpus 16 test.shSubmitted batch job 461</syntaxhighlight> We can specify <code>sbatch</code> options inside our shell script instead using the following syntax: <syntaxhighlight lang="bash">#!/bin/bash#SBATCH --gpus 16 echo "Hello, world!"</syntaxhighlight> After launching the job, we can see it running using our original <code>squeue</code> command: <syntaxhighlight lang="bash">$ squeue --me JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON) 461 compute test.sh ben R 0:37 1 compute-permanent-node-285</syntaxhighlight> We can cancel an in-progress job by running <code>scancel</code>: <syntaxhighlight lang="bash">scancel 461</syntaxhighlight> [https://github.com/kscalelabs/mlfab/blob/master/mlfab/task/launchers/slurm.py#L262-L309 Here is a reference] <code>sbatch</code> script for launching machine learning jobs. ==== Reserving a GPU ==== Here is a script you can use for getting an interactive node through Slurm. <syntaxhighlight lang="bash">gpunode () { local job_id=$(squeue -u $USER -h -t R -o %i -n gpunode) if [[ -n $job_id ]] then echo "Attaching to job ID $job_id" srun --jobid=$job_id --partition=$SLURM_GPUNODE_PARTITION --gpus=$SLURM_GPUNODE_NUM_GPUS --cpus-per-gpu=$SLURM_GPUNODE_CPUS_PER_GPU --pty $SLURM_XPUNODE_SHELL return 0 fi echo "Creating new job" srun --partition=$SLURM_GPUNODE_PARTITION --gpus=$SLURM_GPUNODE_NUM_GPUS --cpus-per-gpu=$SLURM_GPUNODE_CPUS_PER_GPU --interactive --job-name=gpunode --pty $SLURM_XPUNODE_SHELL}</syntaxhighlight> Example env vars:<syntaxhighlight lang="bash">export SLURM_GPUNODE_PARTITION='compute'export SLURM_GPUNODE_NUM_GPUS=1export SLURM_GPUNODE_CPUS_PER_GPU=4export SLURM_XPUNODE_SHELL='/bin/bash'</syntaxhighlight> Integrate the example script into your shell then run <code>gpunode</code>. You can see partition options by running <code>sinfo</code>. You might get an error like this: <code>groups: cannot find name for group ID 1506</code>. But things should still run fine. Check with <code>nvidia-smi</code>. ==== Useful Commands ==== Set a node state back to normal: <syntaxhighlight lang="bash">sudo scontrol update nodename='nodename' state=resume</syntaxhighlight> [[Category:K-Scale]]